

BGSU. Department of Mathemat

Mathematics and Statistics

BOWLING GREEN STATE UNIVERSITY

Weekly Calendar – Fall Semester 2024 Week 9 – October 21 – October 25

Monday, October 21	Putnam Meeting 11:30am – 12:20pm, McLeod Hall 459
	Comprehensive Exams 1:00pm – 5:00pm, McLeod Hall 401 (meet in 450)
	Advisory Committee 1:30pm – 2:30pm, McLeod Hall 400
Tuesday, October 22	Graduate Student Seminar 11:30am – 12:30pm, McLeod Hall 459
	Sneaker: Kadir Vucel
	Title: Sheaves and Cohomology
Wednesday,	Peer Mentor Meetings
October 23	3:30pm – 4:20pm, McLeod Hall 459, 400 & 340
	Undergraduate Committee
	4.30 pm -5.20 pm Mcl eod Hall 400
Thursday,	Peer Mentor Meeting
October 24	4:00pm – 4:50pm, McLeod Hall 400
Friday,	Analysis Reading Seminar
October 25	11:30am – 12:30pm, McLeod Hall 459
	Speaker: Abraham Orinda
	Title: Ergodic Theory and Linear Dynamics, Part 1
	Colloquium
	3:45pm – 5:00pm, via Zoom:
	Speaker: Jyotishka Datta, Department of Statistics, Virginia Tech
	Zoom: https://bgsu-edu.zoom.us/j/81335111178?pwd=cgaMIx7Plm1cau2lvG7Wn216XcwszO.1
	Meeting ID: 813 3511 1178, Passcode: 467613
	Title: Global-Local Shrinkage Priors: An Overview and New Directions
Saturday,	Preview Day
October 26	8:30am – 12:00pm, BTSU 308

ABSTRACT

Colloquium

Title: Global-Local Shrinkage Priors: An Overview and New Directions

Abstract: Building scalable Bayesian methods for handling high-dimensional data with complex structure remains an important methodological challenge with diverse applications. While there is a vast literature proposing elaborate shrinkage and sparsity priors for high-dimensional continuous data and real-valued parameters, there has been limited consideration of compositional or count data and admixtures. In the first part of my talk, I will provide a broad overview of the state-of-the-art in global-local shrinkage priors, covering theoretical optimality as well as computational aspects. In the second part, I will discuss a few recent developments, namely designing a shrinkage prior to handle bi-level sparsity and handling sparse compositional data, routinely observed in microbiomics. I will address the methodological challenges associated with each of these problems and propose to fill this gap by using new prior distributions specially designed to enable handling structured data. I will provide theoretical support for the proposed methods and demonstrate improved performance in simulation settings and applications to environmentrics and microbiome data.