CS 6420: DISTRIBUTED SIMULATION

Semester Hours:	3.0
Coordinator:	Hassan Rajaei
Text:	Various
Author(s):	VARIOUS
Year:	Various

Contact Hours: 3

SPECIFIC COURSE INFORMATION

Catalog Description:

Principles of distributed simulation and applications using multiprocessor systems. Synchronization and time management for distributed environments. High-level architecture for distributed simulation. Prerequisite: CS 3270 or Full Admission to MS in CS Program.

Course type: ELECTIVE

SPECIFIC COURSE GOALS

- I can explain why distributed simulation is needed.
- I understand the main differences between two synchronization methods.
- I can describe how the conservative method works.
- I can describe how the optimistic method works.
- I can name hybrid approaches for distributed simulation.
- I can describe the HLA standard overview for simulation.

LIST OF TOPICS COVERED

- Introduction
 - \circ Why simulation
 - Why parallel and distributed simulation
 - Analytic simulation vs virtual environment
 - Typical applications
- Discrete Event Simulation Fundamentals
 - o Basic concepts: system attribute, state variables, event list, simulation time
 - o Basic mechanisms: time advance, event scheduling, inherent parallelism
 - Modeling issues and logical processes

- Data model, probability distributions, statistics collection
- Parallel Processing Overview
 - Brief intro to parallel processing
 - Overview of cluster computing with MPI
 - Underlying technologies
 - Concurrent simulation processes
- Conservative Synchronization Algorithms
 - Synchronization problem
 - o Deadlock avoidance using null messages
 - Lookahead and the simulation model
 - Deadlock detection and recovery
 - Synchronous execution
 - Barriers Synchronization, Transient Messages, Time Distance between Logical Processes
 - Performance Issues
 - o Pros and cons of conservative mechanism
- Optimistic Synchronization Method
 - o Time Warp
 - Rolling Back and Error Correction, Global Virtual Time, Memory Management Issues
 - Performance Issues
 - Optimization Techniques
 - Comparing optimistic and conservative synchronization
- Hybrid Protocols
 - Moving time windows
 - Space time simulation
 - Breathing time buckets
 - Local time warp
- Distributed Simulation Standards
 - o Distributed virtual environment
 - High level architecture, HLA
 - o Overview, Rules, Object Model, Run-Time Infrastructure, Communication Issues