CS 6290 : NETWORKS AND DISTRIBUTED PROCESSING

Semester Hours:	3.0
Coordinator:	Hassan Rajaei
Text:	Various
Author:	VARIOUS
Year:	Various

Contact Hours: 3

SPECIFIC COURSE INFORMATION

Catalog Description:

Computer network architecture and protocols. Routing, congestion, and flow control. Clientserver models and remote procedure calls. Topics may include algorithms for broadcasting, check pointing, termination detection, and other problems. Prerequisites: Full Admission to MS in CS program or consent of department.

Course type: ELECTIVE

SPECIFIC COURSE GOALS

- I know how diverse components of a distributed processing system communicate with each other.
- I am able to describe which protocols to use to pass data between heterogeneous nodes in the distributed networked system.
- I am able to describe the difference between the distributed operating system and the network operating system.
- I am able to describe what is an atomic transaction and what is meant by commit or abort a transaction in a distributed system.
- I am able to describe why time is an important issue in a distributed system and why it is difficult to have a single clock in a distributed network to synchronize all processes.
- I know what is meant by transparency in distributed networking processes and I am able to identify several types of transparency in a distributed system.

LIST OF TOPICS COVERED

- Review of Computer Network Concepts
 - Technologies: Ethernet, Token Ring, ATM
 - Protocol Layers
 - Transport Level Protocols
- Client/Server Computing
 - Client roles

- Server roles
- Distributed System Protocols and OS
 - o Interprocess Communication with Case Study
 - o Remote Procedure Calls with Case Study
 - Protocols for Distributed Systems
 - Network File Systems
 - File System Characteristics
 - Access Control
- Name Servers
- Distributed Operating Systems
 - Structure of the OS Kernel
 - Processes and Threads
 - Clock Synchronization
 - Physical and Logical Clocks
 - Clock Synchronization Algorithms
 - o Security
 - Cryptography and Public Key Encryption
 - Digital Signatures and Authentication
 - The Kerberos System
- Distributed Algorithms
 - Distributed Transactions
 - Characteristics of Distributed Transactions
 - Two-Phase Commit Protocol
 - Concurrency Control
 - Locking
 - Timestamp Ordering
- Mutual Exclusion
- Deadlock Resolution
 - o Load Balancing