CS 6200 : ADVANCED TOPICS IN ARTIFICIAL INTELLIGENCE

Contact Hours: 3

Semester Hours:	3.0
Coordinator:	Jong Kwan "Jake" Lee
Text:	TBD
Author(s):	TBD
Year:	TBD

SPECIFIC COURSE INFORMATION

Catalog Description:

Intensive study of a major sub-field such as neural networks, expert systems, machine learning/tutoring, natural language processing, pattern recognition, robotics, or others.

Course Type: ELECTIVE

SPECIFIC COURSE GOALS

• TBD

LIST OF TOPICS COVERED

- Introduction
 - Definitions
 - AI, Expert System, Rule-Based Expert System (RBES)
 - How an RBES works
 - Brief history of RBES
 - Applications of RBES
- Foundation of REBES: Rule-Based Production Systems (RBPS)
 - Production system formalisms
 - o Operational principles of RBPS
 - Evaluation of RBPS
 - Advantages
 - Disadvantages
- Inference Engines (Automated RBPS)
 - o Search
 - Chaining
 - Conflict resolution
 - o Success and failure

- Development of RBES using CLIPS (NASA's RBES tool)
 - Tutorial on CLIPS
 - Preconditions
 - o Stages
 - Problem selection
 - Knowledge acquisition: elicitation and induction
 - Knowledge representation: facts and rules
 - Design of the human interface
 - Design of the production system
 - Design of the explanation system
 - Iterative prototyping
 - Verification: consistency and completeness
 - Validation
 - Application
 - Problems and pitfalls
- Fuzzy Logic
 - o Representation of uncertainty
 - Abstraction as a solution
 - Bayesian logic as a solution
 - Certainty factors as a solution
 - Fuzzy logic as a solution
 - o Tutorials on fuzzy logic
 - Classical Set Theory (Cantor)
 - Multi-Valued Logic (Lukasiewics)
 - Relationships: complement, containment, intersection, union
 - Formal definitions
 - Membership graphs: S, Z, and Pi
 - Linguistic Variables, Values, and Modifiers (Hedges)
- Development of RBES Using Fuzzy CLIPS
 - Tutorial on Fuzzy CLIPS (an extension of CLIPS)
 - Design considerations
 - Preconditions for a "Fuzzy" solution
 - Methods of representing uncertainty in Fuzzy CLIPS
 - Major application areas for fuzzy expert systems
 - Advantages of Fuzzy Inference Control
- Case Studies of Successfully Deployed Expert Systems
 - o MACSYMA
 - o MYCIN
 - o XCON
 - PROSPECTOR
- Evaluation of Expert Systems
 - Ethical issues in expert systems

- Benefits of expert systems compared to human experts
 Limitations of expert systems