CS 2010 : PROGRAMMING FUNDAMENTALS

Semester Hours:	3.0	Contact Hours: 3
Coordinator:	Jadwiga A. Carlson	
Text:	Programming in C++ with zyBooks & zyLabs	
Author:	VAHID & LYSECKY	
Year:	2020	

SPECIFIC COURSE INFORMATION

Catalog Description:

Problem solving and algorithm development. Basic programming concepts including elementary data types, arrays, strings, files, control structures, and functions. Searching and sorting algorithms. Testing and debugging strategies. Prerequisite: Math placement score of 32 or MATH 1200 or MATH 99 or higher. Approved for distance education.

Course type: **REQUIRED**

SPECIFIC COURSE GOALS

- I can explain the fundamental concepts of procedural programming.
- I can use a high-level language to write programs to solve problems.
- I can analyze problem requirements in order to understand what type of data and processes are involved in the system.
- I can design a solution using a modular approach and organize program code to implement the design.
- I can debug programs and verify that the output of a program satisfies the problem requirements.
- I can implement algorithms to search and sort an array.
- I can implement simple recursive functions.

COMPUTER SCIENCE STUDENT OUTCOMES ADDRESSED BY THIS COURSE

- CS 1 Analyze a complex computing problem and to apply principles of computing and other relevant disciplines to identify solutions
- CS 2 Design, implement, and evaluate a computing-based solution to meet a given set of computing requirements in the context of the program's discipline
- CS 5 Function effectively as a member or leader of a team engaged in activities appropriate to the program's discipline
- CS 6 Apply computer science theory and software development fundamentals to produce computing-based solutions

SOFTWARE ENGINEERING STUDENT OUTCOMES ADDRESSED BY THIS COURSE

- SE 5 An ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives
- SE 7 An ability to acquire and apply new knowledge, as needed, using appropriate learning strategies

LIST OF TOPICS COVERED

- Introduction and Basic Concepts (1 week = 7%)
 - Computers, programs, C++ (compiler, linker, syntax/logic/run-time errors)
 - Problem solving and use of abstraction
 - Developing algorithms (flowcharting, pseudocode)
- Basic concepts (2 weeks = 14%)
 - Primitive data types (int, char, string, double, and bool)
 - Assignment statement
 - Evaluating expressions (order of precedence)
 - Coercion, type casting (type of polymorphism)
 - Testing/debugging (step over/into/out, conditional breakpoints)
 - Documentation standards (self-documenting naming conventions)

- Decision/Control structure (1.5 weeks = 11 %)
 - Relational and logical operators
 - Conditional clauses (if, if/else, if/else if, switch)
- Loops (2 weeks = 14%)
 - Loop structures (while, do while, for)
 - Sentinel value with while & do while
 - Processing a list of numbers (compute average, find largest/smallest, running total)
 - Input Validation
- Introduction to text file I/O (1 week = 7%)
 - Opening, processing, closing of a file, eof()
 - Additional data types (ifstream, ofstream, fstream)
- Functions (2 weeks = 14%)
 - Function definition, prototype, call
 - Parameter passing (by value, by reference)
 - Function overloading (another type of polymorphism)
- Recursion (direct/linear, 1 week = 7%)
 - Students trace recursive functions
- Arrays (2 weeks = 14%)
 - 1D and 2D arrays
 - Arrays as parameters
- Sorting and Searching Arrays (1.5 weeks = 11%)
 - Bubble sort
 - Linear and binary search

COMPUTER SECURITY TOPICS

Faculty who recently offered CS 2010 have discussed and identified a list of topics related to computer security in this course. Below is a list for instructors to incorporate. (*) indicates topics that are mandatory.

Security Topic	Description	Textbook	Estimated
		Reference ¹	Class
			Hours
*Read Only	Constant values (const) cannot be changed	Chapter 2.10	<1
	during execution.	_	
*Validation	Validating/inspecting input data to determine	Chapter 2.1	1
	whether it is acceptable. Bad output will be	Chapter 3.7	
	produced from bad input.	Chapter 5.2	
*Integer overflow	Integer overflow occurs when assigning a	Chapter 2.17	<1
	value that is too large (overflow) or too small		
	(underflow) to be held in a variable.		
	Variable contains value that is 'wrapped		
	around' set of possible values to negative.		
*Initialization	C++ local variables are not initialized by	Chapter 2.2	1
	default, initialize before use. Static local and	Chapter 7.11	
	global variables are initialized by default.	_	

¹Programming in C++ with zyBooks & zyLabs